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Results for Isolated Nodes

• Given an input, every function produces an output.
Consider when the output is re-used as a new input for the
functional node.
• The behavior of these functional nodes has been studied

when these nodes are in isolation (i.e. they only receive
input from themselves).
• For f : C→ C continuous, the orbit of any z0 ∈ C is the

sequence z0 → z1 = f (z0)→ z2 = f ◦2(z0) · · ·



Julia set of a complex map f : C→ C

z0 is a prisoner of f ⇔ {f ◦n(z0)}n∈N is bounded

z0 is an escapee of f ⇔ {f ◦n(z0)}n∈N is not bounded

The prisoner set of f : P(f ) = {z0 ∈ C prisoner }

The escape set of f : E(f ) = {z0 ∈ C escapee }

The Julia set of f (Gaston Julia, 1893-1978):

J(f ) = ∂P(f ) = ∂E(f )



Julia sets for the logistic family fc(z)→ z2 + c

c=0 c=-0.62-0.432i

c=-0.117-0.856i c=-1.18-0.2i



The Mandelbrot set

Definition. M = {c ∈ C, f ◦nc (0) bounded }

http://math.bu.edu/DYSYS/applets/JuliaIteration.html

http://math.bu.edu/DYSYS/applets/JuliaIteration.html
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Coupled networks of logistic maps

Many natural systems are organized as self-interacting
networks, with each node receiving inputs from both itself and
other nodes. We study the temporal behavior of a network in
which the nodes are complex logistic maps, coupled according
to:

zk(t) −→ zk(t + 1) =

(
n∑

j=1

gkjAkjzj

)2

+ ck, for ck ∈ C

A = the graph adjacency matrix; gjk = edge weights

network architecture =⇒ effects on dynamics



Escape Radius for Dominated Networks

Definition. We say that a network is dominated with self loops
if, for each node 1 6 j 6 n, there exists a node σ(j) for which

|gσ(j)j| >
∑
l,j

|gσ(j)l|

In other words, each node sends to another node of its choice a
projection edge which is stronger than the sum of the strength
of all other incoming edges to the receiving node.

Theorem. Dominated networks with identical c values for all
nodes have the escape radius property.



Escape Radius for Feed-Forward Networks

Definition. We say that a network is feed-forward with self
loops if gii , 0 for all 1 6 i 6 n, and if for all nodes 1 6 j 6 n
and all iterations k > 0 we have

zj(k + 1) =

[∑
l6j

gjlzl(k)

]2

+ c

(in other words, if its adjacency matrix is lower triangular and
has no diagonal zeros).

Theorem. Feed-forward networks with self loops and identical
c values for all nodes have the escape radius property.



Connectedness of Network Equi-Mandelbrot Sets

One interesting result from quadratic networks is that many
Mandelbrot sets are not connected. E.g., for the network:

z1 → z2
1 + c (1)

z2 → (az1 + z2)
2 + c (2)

z3 → (z1 + z2 + bz3)
2 + c(3)

with connectivity weights a = −2/3, b = −1/3 , we have:



Connectedness of Network Uni-Julia Sets

Remark. Many Julia sets are neither connected nor dust.

Uni-Julia sets for a = −2/3 and b = −1/3, for varying c: A.
c = −1; B. c = −0.9 + 0.08i; C. c = 0.25; D. c = −0.595; E.
c = −0.11 + 0.66i; F. c = −0.63; G. c = −0.11 + 0.7i.



Mandelbrot set and connectedness locus

Remark. Many Julia sets are neither connected nor dust. There
happens around the boundary of the equi-M set, via Julia sets
with various numbers of connected components

Comparison between the equi-M set and the uni-J set
connectedness locus. The blue curve corresponds to the
boundary of the equi-M sets.



Current and future questions

• Dimensionality Reduction. We develop generalized rules
and specific cases under which dimensionality reduction
(i.e. treating a group of nodes as a single node) is
permitted with preservation of dynamics.
• Prediction of Dynamics. We search for graph features

which can be used to predict/classify dynamics for each of
the three models.
• Universality. We search for graph properties which are

both robust within a model and which translate between
the different models.



Modelling applications

1 Competitive threshold-linear networks (TLNs). Models
of neural networks consisting of n simple, perceptron-like
neurons. (Curto and Morrison, 2018.)

2 Reduced model of inhibitory clusters (the RMIC). Model
of spiking activity and synchronization in the reticular
thalamic nucleus. (Golomb and Rinzel, 1994.)

3 Chemical oscillatory networks. Models of photosensitive
chemical oscillators which spontaneously form
sychronized clusters. (Nkomo, Tinsley, and Showalter,
2013.)



Threshold-Linear Networks

dxi

dt
= −xi +

[
n∑

j=1

Wijxj + bi

]
• n is the number of neurons
• xi(t) is the activity level (firing rate) of the i th neuron
• Wij is the connection strength from neuron j to neuron
• [·]+ = max{·, 0} is the threshold nonlinearity



Threshold-Linear Networks

Although each node has close-to-linear behaviour, TLNs exhibit
ensemble nonlinear dynamics determined by connectivity.



Threshold-Linear Networks

Utility in dynamics prediction. Since TLN dynamics are
entirely determined by connectivity, we plan to learn more
about the relationship between network structure and behavior
in hopes of applying it to dynamics prediction in our complex
quadratic maps.



Reduced Model of Inhibitory Clusters

Action Potential. In animals, two main types of action
potentials:

1 Na channels - usually last for very short periods of time
(often <1ms)

2 Ca channels - can last for 100ms or longer

In some neurons (including neurons in the reticular thalamic
nucleus), Ca action potentials (slow spikes) provide a driving
force for a long burst of rapid Na spikes



Reduced Model of Inhibitory Clusters

C
dVi

dt
= ICa(Vi, hi) + IL(Vi) −

gsyn

n
(Vi − Vsyn)

n∑
i=1

si(t)

dhi

dt
= kh(Vi)[h∞(Vi) − hi]

dsi

dt
= kf · s∞(Vi)(1 − si) − krsi

with the currents given by

ICa(V , h) = −gCam3∞(V)h(V − VCa) and
IL(V) = = −gL(V − VL)



Reduced Model of Inhibitory Clusters

Example of cluster formation for gsyn = 0.345 mS/cm2



Reduced Model of Inhibitory Clusters

Utility for Dimensionality Reduction. The spontaneously
formed clusters have identical dynamics and function as a
single unit, despite being composed of many neurons. The
conditions which generate clusters may provide insight into the
conditions which permit dimensionality reductions.



Photosensitive Oscillatory Networks

dXj

dt
= f (Xj,Zj, qj) +

φj

ε1

dZj

dt
= g(Xj,Zj, qj) + 2φj

• f, g are the nonphotochemical reaction components
• Xj = [HBrO2] and Zj = [Ru(bpy)3+]
• qj is the stoichiometric factor

φj = φ0 +

j+n∑
ρ=j−n

K(Zρ(t − τ) − Zj(t))



Photosensitive Oscillatory Networks

Chimera states. These networks spontaneously form groups of
coexisting synchronized and unsynchronized oscillators.



Phosensitive Oscillatory Networks

Utility in Dimensionality Reduction. Similar to the RMIC,
further observing the conditions under which cluster states form
may provide insight in regards to dimensionality reduction.

Chimera states and network dynamics. Additionally, the
existence of chimera states may provide a physical analogy for
our observation of co-existing prisoner/escapee nodes.



Other models

Note on choice of models. These models were also chosen for
their signifigant differences in:
• the type of node-wise dynamics. discrete vs continuous,

almost-linear vs highly nonlinear, etc
• the measures used to asses ensemble long-term dynamics.

topology of the asymptotic set, center manifold theory for
analysis of equilibria and cycles, synchronization methods

Remark. Discovery of features which translate between these
three models are more signifigant with regards to universality
because of the signifigant differences between these models.
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